Boundary Conditions as Dirac Constraints

M.M. Sheikh-Jabbari ${ }^{a}$ and A. Shirzad ${ }^{a, b}$ (]
${ }^{a}$ Institute for Studies in Theoretical Physics and Mathematics IPM, P.O.Box 19395-5531, Tehran, Iran
and
${ }^{b}$ Department of Physics Isfahan University of Technology
Isfahan, Iran

Abstract

In this article we show that boundary conditions can be treated as Lagrangian and Hamiltonian constraints. Using the Dirac method, we find that boundary conditions are equivalent to an infinite chain of second class constraints which is a new feature in the context of constrained systems. Constructing the Dirac brackets and the reduced phase space structure for different boundary conditions, we show why mode expanding and then quantizing a field theory with boundary conditions is the proper way. We also show that in a quantized field theory subjected to the mixed boundary conditions, the field components are noncommutative.

PACS: 11.10.Ef, 11.25.-w, 04.60.Ds,
Key words: Boundary conditions, Constraints, Dirac bracket.

[^0]
1 Introduction

It is well-known that to formulate a general classical field theory defined in a box, besides the equations of motion one should know the behaviour of the fields on the boundaries, boundary conditions. Boundary conditions are usually relations between the fields and their various derivatives, including the time derivative, on the boundaries, expected to be held at all the times. In Hamiltonian language the boundary conditions are in general functions of the fields and their conjugate momenta; hence the field theories subjected to the boundary conditions might be understood by the prescription for handling the constrained systems proposed by Dirac [1].

In the usual field theory arguments, since boundary conditions are usually linear combinations of fields and their momenta, one can easily impose them on the solutions of the equations of motion, and find the final result. But, imposing the boundary conditions in some special cases may lead to inconsistencies with the canonical commutation relations [2, 3, 7, 7, 5, 6, 7].

In this article, considering the boundary conditions as constraints, we apply the Dirac's procedure to this constrained system. Although this idea have been used in [5, 6], the problem has new and special features in the context of constrained systems on which, we mostly concentrate.

In the second section, we review the Lagrangian and Hamiltonian constrained systems. In section 3, to visualize the seat of boundary conditions we take a toy model and by discretizing the model show that boundary conditions are in fact the equations of motion for the points at the boundaries so that, when we go to the continuum limit, i.e. , the original theory, the acceleration term disappears. In other words boundary conditions are Lagrangian constraints which are not consequences of a singular Lagrangian. In section 4, going to Hamiltonian picture we study the constraint structure resulting from the boundary conditions, and apply it explicitly to some field theories. Implying constraint consistency we show that although the Lagrange multiplier is determined, the constraint chain is not terminated, This is a new feature in the constrained systems analysis. Exhausting all the consistency checks we end up with an infinite constraint chain which all of them are of second class, which is another new feature of this constraint structure. Moreover, we construct the fundamental Dirac brackets, the Dirac brackets of fields and their conjugate momenta. In section 5 , by a canonical transformation we go to the Fourier modes in terms of which, the constraint chain obtained in the previous section can be easily solved. In this way we prove that, using the proper mode expansions is equivalent to working in the reduced phase space.

In section 6, we apply the machinery developed in the previous sections to the case of mixed boundary conditions, i.e., we find the constraints chain, the Dirac bracket and the reduced phase space. The new and interesting result of this case is that, the Dirac bracket of two field components is obtained to be non-zero and hence, in the quantum theory these field components are noncommuting. The last section is devoted to the concluding remarks.

2 Review of Dirac Procedure

Given the Lagrangian $L(q, \dot{q})$ (or $L(\phi, \partial \phi)$ in a field theory), the Lagrangian equations of motion are:

$$
\begin{equation*}
\mathbf{L}_{i}=W_{i j} \ddot{q}_{j}+\alpha_{i}=0 \tag{2.1}
\end{equation*}
$$

where \mathbf{L}_{i} are Eulerian derivatives, $W_{i j}(q, \dot{q}) \equiv \frac{\partial^{2} L}{\partial \dot{q}^{i} \partial \dot{q}^{j}}$ is called the Hessian matrix, and $\alpha_{i} \equiv$ $\frac{\partial L}{\partial q^{i}}-\dot{q}_{j}\left(\frac{\partial^{2} L}{\partial \dot{q}^{2} \partial q^{j}}\right)$. If $\left|W_{i j}\right|=0$, the Lagrangian is called singular and in this case the number of equations containing accelerations are less than the number of degrees of freedom. Hence a number of Lagrangian constraints, $\gamma^{a}(q, \dot{q})=0$, emerges (To obtain these constraints we should simply multiply both sides of (2.1) by the null eigenvector λ_{i}^{a} of W, so $\gamma^{a}(q, \dot{q})=\lambda_{i}^{a} \alpha_{i}$, [8].). Then we should add the time derivatives of constraints, $\dot{\gamma}^{a}(q, \dot{q})$, to the set of equations of motion to get new relations containing the accelerations. As a result two cases may happen 1) the rank of equations with respect to acceleration is equal to the number of degrees of freedom.
2) new constraints, acceleration free relations, emerging.

In the first case the equations of motion can be solved completely, however, the solutions should obey the acceleration free equations, the constraints. In the second, the derivatives of new constraints and derivatives of previous constraints should be added to the equations of motion, and the same scenario should be repeated.

At the end, there may remain a number of undetermined accelerations; it is shown that they correspond to the gauge degrees of freedom and are related to the first class Hamiltonian constraints. Moreover roughly speaking, there may exist some degrees of freedom which have no dynamics and are completely determined via the constraints. These are related to the the second class Hamiltonian constraints [9].

Let us study the Hamiltonian formulation. Singularity of the Hessian matrix, $\frac{p_{i}}{\partial \dot{q}^{j}}$, implies the Legendre transformation, $(q, \dot{q}) \rightarrow(q, p)$, to have a zero Jacobian and hence, the set of
momenta, p_{i};

$$
\begin{equation*}
p_{i}=\frac{\partial L}{\partial \dot{q}^{i}}, \tag{2.2}
\end{equation*}
$$

are not independent functions of q and \dot{q}. So a number of Hamiltonian primary constraints turns up

$$
\begin{equation*}
\Phi_{a}^{(0)}(q, p)=0 \tag{2.3}
\end{equation*}
$$

It can be shown that (1] dynamics of any function in phase space is obtained by

$$
\begin{equation*}
\dot{g} \approx\left\{g, H_{T}\right\}_{P . B .} \tag{2.4}
\end{equation*}
$$

where weak equality, \approx, is the equality on the constraint surface, and

$$
\begin{equation*}
H_{T}=H+\lambda_{a} \Phi_{a} \tag{2.5}
\end{equation*}
$$

is the total Hamiltonian, λ_{a} being the Lagrange multipliers.
Like the Lagrangian case the consistency conditions of the primary constraints should be investigated, i.e. the constraints should be valid under the time evolution:

$$
\begin{equation*}
\dot{\Phi}_{a}^{(0)} \approx\left\{\Phi_{a}^{(0)}, H_{T}\right\}_{P . B .} \approx\left\{\Phi_{a}^{(0)}, H\right\}+\lambda_{b}\left\{\Phi_{a}^{(0)}, \Phi_{b}^{(0)}\right\} \approx 0 \tag{2.6}
\end{equation*}
$$

If the above relation dose not hold identically, then two possibilities remains i) $\left\{\Phi_{a}^{(0)}, \Phi_{b}^{(0)}\right\}$'s vanish weakly. In this case new Hamiltonian constraints

$$
\begin{equation*}
\Phi^{(1)}=\left\{\Phi_{a}^{(0)}, H\right\} \tag{2.7}
\end{equation*}
$$

turns up.
ii) $\left\{\Phi_{a}^{(0)}, \Phi_{b}^{(0)}\right\}$ do not vanish, yielding equations for determining λ_{a}.

In general, depending on the rank of the matrix $\left\{\Phi_{a}^{(0)}, \Phi_{b}^{(0)}\right\}$, we may have a mixture of two possibilities. That is, some of the Lagrange multipliers are determined and a number of new constraints emerge. Here we do not bother the reader with the details. A complete and detailed discussion can be found in [9].

Now the consistency conditions of $\Phi_{a}^{(1)}$ should be verified which may result into some new constraints $\Phi_{a}^{(2)}$. The procedure goes on, and finally we end up with some constraint chains. Roughly speaking, each chain terminates if a Lagrange multiplier is determined or, if we get an identically satisfied relation. The latter case happens when the last constraint has weakly vanishing Poisson bracket with the primary constraints and the Hamiltonian.

We denote the set of constraints $\Phi^{(1)}, \Phi^{(2)}, \ldots$ as secondary constraints. These are really consequences of primary constraints while the primary constraints, by themselves have their
origin in the singularity of the Lagrangian (singularity of the Hessian matrix). In a pure Hamiltonian point of view, however, the origin of primary constraints is not of essential importance. In any way given some primary constraints, we should build the total Hamiltonian, (2.5), and check their consistency.

There is another important classification of constraints: If the Poisson bracket of some constraint with all the constraints in the chain vanishes, it is called first class. And if the matrix of mutual Poisson brackets of a subset of constraints, $C^{M N}$,

$$
\begin{equation*}
C^{M N}=\left\{\Phi^{M}, \Phi^{N}\right\} \tag{2.8}
\end{equation*}
$$

has the maximally rank, it is invertible, we deal with second class constraints. It is shown that a constraint chain terminating with an identity, is of first class and ending with determining Lagrange multipliers are of second class [9]. To find the dynamics of a system with second class constraints, one may use the Dirac bracket,

$$
\begin{equation*}
\{A, B\}_{\text {D.B. }}=\{A, B\}_{\text {P.B. }}-\left\{A, \Phi_{M}\right\}_{\text {P.B. }}\left(C^{-1}\right)^{M N}\left\{\Phi_{N}, B\right\}_{\text {P.B. }} \tag{2.9}
\end{equation*}
$$

The important property of the Dirac bracket is that for an arbitrary function A and for all second class constraints Φ_{M},

$$
\begin{equation*}
\left\{\Phi_{M}, A\right\}_{D . B .}=0 \tag{2.10}
\end{equation*}
$$

It can be shown that, using the Dirac brackets instead of Poisson bracket, is equivalent to priory putting the second class constraints strongly equal to zero.

For second class constraints we can always find a canonical transformation such that the constraints, Φ_{M}, lie on the first $2 n$ coordinates $\left(q_{1}, \ldots, q_{n} ; p_{1}, \ldots, p_{n}\right)$ of the phase space and the remaining degrees of freedom, $\left(Q_{1}, \ldots, Q_{N-n} ; P_{1}, \ldots, P_{N-n}\right)$ are unconstrained. The Dirac bracket in the original phase space is equal to the Poisson bracket in the space $\left(Q_{1}, \ldots, Q_{N-n} ; P_{1}, \ldots, P_{N-n}\right)$, the reduced phase space [1, 10, 11]. Although finding the above canonical transformation is not an easy task, for the case we study in this paper, boundary conditions as constraints, we show that using the suitable mode expansions, is in fact equivalent to going to reduced phase space.

3 Boundary Conditions as Constraints

Boundary conditions are acceleration free equations which in general are not related to a singular Lagrangian. To visualize this point, let us take a simple $(1+1)$ field theory as a toy
model

$$
\begin{equation*}
S=\frac{1}{2} \int_{0}^{l} d x \int_{t_{1}}^{t_{2}} d t\left[\left(\partial_{t} \phi\right)^{2}-\left(\partial_{x} \phi\right)^{2}\right] . \tag{3.1}
\end{equation*}
$$

Variation of the action with respect to ϕ gives

$$
\begin{equation*}
\delta S=\int_{0}^{l} d x \int_{t_{1}}^{t_{2}} d t \mathbf{L}(\phi) \delta \phi+\left.\int_{t_{1}}^{t_{2}} d t\left(\partial_{x} \phi\right) \delta \phi\right|_{0} ^{l}+\left.\int_{0}^{l} d t\left(\partial_{t} \phi\right) \delta \phi\right|_{t_{1}} ^{t_{2}} \tag{3.2}
\end{equation*}
$$

where $\mathbf{L}(\phi)=\partial_{t}^{2} \phi-\partial_{x}^{2} \phi$, is the Eulerian derivative. For an arbitrary $\delta \phi$, variation of the action vanishes if the three terms in the above equation vanish independently. The first term in (3.2) leads to equations of motion and the last term to the initial conditions. The second term which is called the surface term, results in the boundary conditions. For this term to vanish, there are two choices $\left.\delta \phi\right|_{\text {boundary }}=0$, Dirichlet boundary conditions, or $\left.\partial_{x} \phi\right|_{\text {boundary }}=0$, Neumann boundary conditions. The boundary conditions unlike the equations of motion, are acceleration-free equations and should be held at all the times. In other words, they can be treated as Lagrangian constraints. To clarify this point we repeat the above argument in the discrete version:

$$
\begin{gather*}
S=\frac{1}{2} \int_{t_{1}}^{t_{2}} d t \sum_{i=0}^{N} \epsilon\left(\partial_{t} \phi_{i}\right)^{2}-\sum_{i=0}^{N-1} \frac{1}{\epsilon}\left(\phi_{i}-\phi_{i+1}\right)^{2}, \tag{3.3}\\
\phi_{i}(t)=\left.\phi(x, t)\right|_{x=x_{i}} \quad ; x_{n}=n \epsilon, \tag{3.4}
\end{gather*}
$$

and $\epsilon=\frac{l}{N}$ so that $\epsilon \rightarrow 0(N \rightarrow \infty)$ reproduces the continuum theory.
Demanding the variation of (3.3) to vanish, leads to ${ }^{[}$

$$
\begin{gather*}
\epsilon \partial_{t}^{2} \phi_{0}=\frac{1}{\epsilon}\left(\phi_{1}-\phi_{0}\right), \tag{3.5}\\
\epsilon \partial_{t}^{2} \phi_{i}=\frac{1}{\epsilon}\left(\phi_{i+1}-2 \phi_{i}+\phi_{i-1}\right), \quad i \neq 0, N \tag{3.6}\\
\epsilon \partial_{t}^{2} \phi_{N}=\frac{1}{\epsilon}\left(\phi_{N}-\phi_{N-1}\right) . \tag{3.7}
\end{gather*}
$$

Taking the continuum limit, assuming that acceleration of the end point are finite, the equations for $0, N$ give

$$
\begin{equation*}
\lim \frac{1}{\epsilon}\left(\phi_{1}-\phi_{0}\right)=0 \quad \text { and } \quad \lim \frac{1}{\epsilon}\left(\phi_{N}-\phi_{N-1}\right)=0 \tag{3.8}
\end{equation*}
$$

Hence in the continuum limit equations of motion for the end points give acceleration free equations, the Lagrangian constraints, where as (3.6) leads to $\mathbf{L}(\phi)=0$, which actually contains the acceleration term.

[^1]A new feature appearing here is that, unlike the usual Lagrangian constraints, boundary conditions are the constraints which are not consequences of the singularity of Lagrangian, but a result of taking the continuum limit.

4 The Hamiltonian Setup

In this section, by going to Hamiltonian formulation, we apply the Dirac procedure to a field theory with given boundary conditions. Again, we take our simple toy model and treat the boundary conditions as Hamiltonian primary constraints:

$$
\begin{equation*}
\Phi^{(0)}=\left.\partial_{x} \phi\right|_{x=0} . \tag{4.1}
\end{equation*}
$$

Here we explicitly work out Neumann boundary condition at one end, the Neumann boundary condition at the other end and the Dirichlet cases can be worked out similarly. The total Hamiltonian is built by adding the constraint to the Hamiltonian by arbitrary Lagrange multiplier

$$
\begin{equation*}
H_{T}=H+\lambda \Phi^{(0)}, \tag{4.2}
\end{equation*}
$$

with

$$
\begin{gather*}
H=\frac{1}{2} \int_{0}^{l} d x \quad \Pi^{2}+\left(\partial_{x} \phi\right)^{2} \tag{4.3}\\
\Pi=\partial_{t} \phi . \tag{4.4}
\end{gather*}
$$

We should remind that as discussed in sec. 2, the appearance of the constraints (4.1) is not a consequence of the definition of the momenta for an ordinary singular Lagrangian and hence, the transformation (4.4) between the velocities and momenta is well-defined and invertible throughout all the points, even at the boundaries.

Now we should check the consistency condition

$$
\begin{equation*}
\dot{\Phi}^{(0)}=\left\{\Phi^{(0)}, H_{T}\right\}_{P . B .}=\left.\partial_{x} \Pi\right|_{0} \equiv \Phi^{(1)}, \tag{4.5}
\end{equation*}
$$

which leads to the secondary constraint, $\Phi^{(1)}$. It should be noted that to obtain (4.5), although the conditions are imposed at the boundaries, the fields can safely be extended into neighbourhood of the boundaries and we can use $\Phi^{(0)}=\int \delta(x) \partial_{x} \phi d x$.

We should go further:

$$
\begin{equation*}
\dot{\Phi}^{(1)}=\left\{\Phi^{(1)}, H_{T}\right\}=\left\{\Phi^{(1)}, H\right\}+\lambda\left\{\Phi^{(1)}, \Phi^{(0)}\right\}=0 . \tag{4.6}
\end{equation*}
$$

The second term on the right hand side,

$$
\begin{gather*}
\lambda\left\{\Phi^{(1)}, \Phi^{(0)}\right\}=\int \delta(x) \delta\left(x^{\prime}\right)\left\{\partial_{x} \Pi, \partial_{x^{\prime}} \phi\right\} d x d x^{\prime} \tag{4.7}\\
=-\int \delta(x) \delta\left(x^{\prime}\right) \partial_{x} \partial_{x^{\prime}} \delta\left(x-x^{\prime}\right) d x d x^{\prime},
\end{gather*}
$$

is not well-defined, and formally can be written as $\left.\partial_{x}^{2} \delta\left(x-x^{\prime}\right)\right|_{x=x^{\prime}=0}$. This term compared to the first term is infinitely large. The only way to impose the consistency condition on the constraints is

$$
\begin{equation*}
\lambda=0, \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\Phi^{(1)}, H\right\}=0 \tag{4.9}
\end{equation*}
$$

There is a new feature appearing which is not any of the cases i) and ii) discussed in section 2. The consistency condition, (4.6), reduces to two equations, (4.8) and (4.9), and although the Lagrange multiplier is determined the constraint chain is not terminated.

The above discussion can be better understood if the calculation is regularized by considering the discrete case. Using the the discrete version of equation (4.6), λ is turned out to be of the order of ϵ, going to the continuum limit is vanishes, and the other term, $\left\{\Phi^{(1)}, H\right\}$, should vanish separately.

Defining $\left\{\Phi^{(1)}, H\right\}$ as $\Phi^{(2)}$, the other secondary constraint, we find

$$
\begin{equation*}
\Phi^{(2)}=\left.\partial_{x}^{3} \phi\right|_{0} \tag{4.10}
\end{equation*}
$$

We should go on:

$$
\begin{equation*}
\Phi^{(3)} \equiv \dot{\Phi}^{(2)}=\left\{\Phi^{(2)}, H_{T}\right\}=\left\{\Phi^{(2)}, H\right\}=\left.\partial_{x}^{3} \Pi\right|_{0} . \tag{4.11}
\end{equation*}
$$

This process should be continued and finally we are left with an infinite number of constraints:

$$
\Phi^{(n)}=\left\{\begin{array}{cl}
\left.\partial_{x}^{(n+1)} \phi\right|_{0} & n=0,2,4, \ldots \tag{4.12}\\
\left.\partial_{x}^{(n)} \Pi\right|_{0} & n=1,3,5, \ldots
\end{array}\right.
$$

Exhausted the constraint consistency conditions, we show that the Poisson bracket of the constraints,

$$
\begin{equation*}
C_{m n} \equiv\left\{\Phi^{(m)}, \Phi^{(n)}\right\} \tag{4.13}
\end{equation*}
$$

is non-singular and hence, the set of constraints (4.12) are all of second class. To show this first we calculate

$$
C_{m n}=\left\{\begin{array}{cl}
0 & m, n \tag{4.14}\\
0 & =0,2,4, \ldots \\
0 & m, n
\end{array}=1,3,5, \ldots .\right.
$$

To find $\operatorname{det} C$, the non-zero elements should be regularized. This regularization can be done by two methods, discretization or using a limit of a regular function, e.g. the Gaussian function, to represent $\delta(x)$. Here we choose the second, but one can easily show that the other method gives the same results. Inserting

$$
\begin{equation*}
\delta\left(x-x^{\prime}\right)=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon \sqrt{\pi}} e^{\frac{-\left(x-x^{\prime}\right)^{2}}{\epsilon^{2}}} \tag{4.15}
\end{equation*}
$$

into (4.14) we find

$$
\begin{align*}
& \int \delta(x) \delta\left(x^{\prime}\right) \partial_{x}^{m+1} \partial_{x^{\prime}}^{n} \delta\left(x-x^{\prime}\right) d x d x^{\prime}=\frac{-1}{\sqrt{\pi}} \epsilon^{-(m+n+2)} H_{m+n+1}(0) \tag{4.16}\\
= & \frac{-1}{\sqrt{\pi}}(-2)^{(n+m+1) / 2} \epsilon^{-(m+n+2)}(m+n)!!, \quad m=0,2,4, \ldots, n=1,3,5, \ldots
\end{align*}
$$

$H_{n}(0)$ denotes the Hermite polynomials at $x=0$ [12]. Putting these together, C is finally found to be

$$
\begin{equation*}
C=A \otimes B \tag{4.17}
\end{equation*}
$$

where

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

and B is an infinite dimensional matrix with

$$
\begin{equation*}
B_{m n}=\frac{-1}{\sqrt{\pi}}(-2)^{(n+m-1)} \frac{((2(m+n)-3)!!}{\epsilon^{-2(m+n)-1}} \quad m, n=1,2, \ldots . \tag{4.18}
\end{equation*}
$$

It is straightforward to show that the matrix B has non-zero determinant, i.e. the matrix C is invertible, and hence all the constraints in the chain are second class. One way to consider all of them is using the Dirac bracket. To find Dirac bracket of any two arbitrary functions in the phase space, it is enough to calculate Dirac brackets of $(\phi, \phi),(\phi, \Pi)$ and (Π, Π) 队

[^2]\[

$$
\begin{align*}
\left\{\phi(x), \phi\left(x^{\prime}\right)\right\}_{\text {D.B. }} & =-\left\{\phi(x), \Phi^{(m)}\right\} C_{m n}^{-1}\left\{\Phi^{(n)}, \phi\left(x^{\prime}\right)\right\}=0 . \tag{4.19}\\
\left\{\Pi(x), \Pi\left(x^{\prime}\right)\right\}_{\text {D.B. }} & =-\left\{\Pi(x), \Phi^{(m)}\right\} C_{m n}^{-1}\left\{\Phi^{(n)}, \Pi\left(x^{\prime}\right)\right\}=0 . \tag{4.20}\\
\left\{\phi(x), \Pi\left(x^{\prime}\right)\right\}_{\text {D.B. }}= & \delta\left(x-x^{\prime}\right)-\left\{\phi(x), \Phi^{(m)}\right\} C_{m n}^{-1}\left\{\Phi^{(n)}, \Pi\left(x^{\prime}\right)\right\} \tag{4.21}\\
& =\delta\left(x-x^{\prime}\right)-R\left(x, x^{\prime}\right) .
\end{align*}
$$
\]

Without using the explicit form of C^{-1} one can show

$$
\begin{equation*}
R\left(x, x^{\prime}\right)=\kappa \epsilon \delta(x) \delta\left(x^{\prime}\right) \tag{4.22}
\end{equation*}
$$

where κ is a numeric factor. To find κ, let us obtain the Dirac bracket of the constrain Φ^{0} with an arbitrary function f, using (2.10) we should have

$$
\begin{equation*}
\left\{\left.\partial_{x} \phi(x)\right|_{0}, f(\phi, \Pi)\right\}_{D . B .}=\int \delta(x) \partial_{x}\{\phi(x), f\}_{D . B .}=0 \tag{4.23}
\end{equation*}
$$

Denoting $\frac{\partial f}{\partial\left(\Pi\left(x^{\prime}\right)\right)} \equiv g\left(x^{\prime}\right)$, we can write

$$
\begin{equation*}
\int \delta(x) \partial_{x}\left\{\phi(x), \Pi\left(x^{\prime}\right)\right\}_{D . B . g} g\left(x^{\prime}\right)=0 . \tag{4.24}
\end{equation*}
$$

Inserting (4.21) and (4.22) into (4.24) reduces to

$$
\begin{equation*}
\int\left(\partial_{x} \delta(x)+\kappa \epsilon \delta(x) \partial_{x} \delta(x)\right) g(x)=0 \tag{4.25}
\end{equation*}
$$

Remembering (4.15), we find

$$
\begin{equation*}
\kappa=-\sqrt{\pi} . \tag{4.26}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\{\phi(x), \Pi\left(x^{\prime}\right)\right\}_{D . B .}=\delta\left(x-x^{\prime}\right)+\kappa \epsilon \delta(x) \delta\left(x^{\prime}\right) \tag{4.27}
\end{equation*}
$$

Appearance of regularization parameter, ϵ, in the Dirac bracket sounds bad, but since the second term has two delta functions, to be of the same order of the first term, in fact an ϵ factor is necessary. We will clarify and discuss this point in the next section.

The Dirichlet boundary condition can be worked out similarly. In this case the constraint chain is obtained to be

$$
\Phi^{(n)}=\left\{\begin{array}{cc}
\left.\partial_{x}^{(n)} \phi\right|_{0} & n=0,2,4, \ldots \tag{4.28}\\
\left.\partial_{x}^{(n-1)} \Pi\right|_{0} & n=1,3,5, \ldots
\end{array}\right.
$$

Performing the calculations, one can show that the Dirac brackets are like the Neumann case, except for the κ factor, which is $+\sqrt{\pi}$.

5 Mode expansion and Reduced Phase Space

In the previous section we showed that a field theory subjected to the Neumann or Dirichlet boundary conditions is a system constrained to an infinite chain of second class constraints. As mentioned in sec. 2, for a system with second class constraints, there is a subspace of phase space which is spanned by a set of unconstrained canonical variables, the reduced phase space. The important property of these variables is that, Poisson bracket in terms of them is equivalent to the Dirac bracket defined on the whole constrained phase space.

In this section we will explicitly find the reduced phase space and show that it is in fact equivalent to phase space determined by the Fourier modes.

Let us consider the Fourier transformed variables

$$
\begin{align*}
& \phi(x)=\frac{1}{\sqrt{2 \pi}} \int \phi(k) e^{i k x} d k, \quad \phi(k)=\frac{1}{\sqrt{2 \pi}} \int \phi(x) e^{-i k x} d x \tag{5.1}\\
& \Pi(x)=\frac{1}{\sqrt{2 \pi}} \int \Pi(k) e^{-i k x} d k \quad, \quad \Pi(k)=\frac{1}{\sqrt{2 \pi}} \int \Pi(x) e^{i k x} d x
\end{align*}
$$

One can easily show that the above transformation is canonical:

$$
\begin{equation*}
\left\{\phi(k), \phi\left(k^{\prime}\right)\right\}=0 \quad, \quad\left\{\Pi(k), \Pi\left(k^{\prime}\right)\right\}=0 \quad, \quad\left\{\phi(k), \Pi\left(k^{\prime}\right)\right\}=\delta\left(k-k^{\prime}\right) \tag{5.2}
\end{equation*}
$$

The Neumann (Dirichlet) constraint chain, (4.12) and (4.28), in terms of the new variables are easily obtained: All the odd (even) moments of $\phi(k)$ and $\Pi(k)$ are zero. The most general solution to these conditions is that $\phi(k)$ and $\Pi(k)$ are even (odd) functions of k. Then (5.1) gives 月 $^{\prime}$

$$
\begin{equation*}
\phi(x)=\frac{1}{\sqrt{\pi}} \int \phi(k) \cos k x d k \quad, \quad \Pi(x)=\frac{1}{\sqrt{\pi}} \int \Pi(k) \cos k x d k \tag{5.3}
\end{equation*}
$$

The main advantage of the Fourier modes, $\phi(k)$ and $\Pi(k)$, is that although they are limited to even (odd) functions, are still canonical variables; in contrast with the original fields $\phi(x)$ and $\Pi(x)$ which lose their usual canonical structure due to constraints.

To compare the Dirac bracket results with those of reduced phase space, we work out Poisson brackets of $\phi(x)$ and $\Pi(x)$. Using (5.2) and (5.3) we have

$$
\begin{gather*}
\left\{\phi(x), \phi\left(x^{\prime}\right)\right\}=0 \\
\left\{\Pi(x), \Pi\left(x^{\prime}\right)\right\}=0 \tag{5.4}\\
\left\{\phi(x), \Pi\left(x^{\prime}\right)\right\}=\frac{1}{\pi} \int \cos k x \cos k x^{\prime} d k \equiv \delta_{N}\left(x, x^{\prime}\right)
\end{gather*}
$$

[^3]for Neumann boundary conditions. For Dirichlet case only $\{\phi, \Pi\}$ differs from above:
\[

$$
\begin{equation*}
\left\{\phi(x), \Pi\left(x^{\prime}\right)\right\}=\frac{1}{\pi} \int \sin k x \sin k x^{\prime} d k \equiv \delta_{D}\left(x, x^{\prime}\right) \tag{5.5}
\end{equation*}
$$

\]

Performing the integrations we have

$$
\begin{align*}
& \delta_{N}\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right)+\delta\left(x+x^{\prime}\right), \tag{5.6}\\
& \delta_{D}\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right)-\delta\left(x+x^{\prime}\right) .
\end{align*}
$$

If we consider only the positive x^{\prime} s, $x \geq 0, \delta_{N}$ and δ_{D} for $x, x^{\prime} \neq 0$ are exactly $\delta\left(x-x^{\prime}\right)$. For $x, x^{\prime}=0$, we regularize delta functions by

$$
\left\{\begin{array}{ll}
\delta\left(x-x^{\prime}\right)+\delta\left(x+x^{\prime}\right)=\frac{2}{\sqrt{\pi} \epsilon}, & \text { at } x=x^{\prime}=0 \tag{5.7}\\
\delta\left(x-x^{\prime}\right)-\delta\left(x+x^{\prime}\right)=0
\end{array} \quad\right.
$$

Hence δ_{N} and δ_{D} for $x \geq 0$ is in exact agreement with the Dirac bracket results obtained in previous section. The above argument clarifies, why using the usual mode expansions to quantize a system with Neumann or Dirichlet boundary condition, i.e., imposing the boundary conditions and then quantizing, works.

6 Mixed Boundary Conditions, Another Example

In this section we handle a more general family of boundary conditions, mixed boundary conditions, which are combinations of Neumann and Dirichlet cases. It has been shown that these boundary conditions lead to unusual results in the context of string theory [2, 3, , 4, 5, 6, 7].

As a toy model for a field theory resulting in the mixed boundary conditions consider

$$
\begin{equation*}
S=\frac{1}{2} \int_{0}^{l} d x \int_{t_{1}}^{t_{2}} d t\left[\left(\partial_{t} \phi_{i}\right)^{2}-\left(\partial_{x} \phi_{i}\right)^{2}+F_{i j} \partial_{t} \phi_{i} \partial_{x} \phi_{j}\right] \tag{6.1}
\end{equation*}
$$

where $i, j=1,2$ and $F_{i j}$ is a constant antisymmetric background. Varying S with respect to ϕ_{i}, gives:

$$
\begin{gather*}
\partial_{t}^{2} \phi_{i}-\partial_{x}^{2} \phi^{i}=0 \tag{6.2}\\
\partial_{x} \phi_{i}+\mathcal{F}_{i j} \partial_{t} \phi_{j}=0 \quad \text { at } x=0, l . \tag{6.3}
\end{gather*}
$$

Equations (6.3), as discussed in section 3, give the Lagrangian constraints. In the discretized version, (6.3) are the equations of motion for the end points and in the continuum limit, the acceleration term disappears. It is worth noting that (6.3) reproduce the Neumann and Dirichlet boundary conditions for $F=0$ and ∞ respectively.

Now to apply the Dirac method, we go to Hamiltonian formulation:

$$
\begin{gather*}
\Pi_{i}=\partial_{t} \phi_{i}+\mathcal{F}_{i j} \partial_{x} \phi_{j} \tag{6.4}\\
H=\frac{1}{2} \int_{0}^{l}\left(\Pi_{i}-F_{i j} \partial_{x} \phi_{j}\right)^{2}+\left(\partial_{x} \phi_{i}\right)^{2} d x \tag{6.5}
\end{gather*}
$$

and the primary constraints,

$$
\begin{equation*}
\Phi_{i}^{(0)}=\left.\Phi_{i}(x)\right|_{x=0}, \tag{6.6}
\end{equation*}
$$

with

$$
\begin{equation*}
\Phi_{i}(x) \equiv M_{i j} \partial_{x} \phi_{j}+\mathcal{F}_{i j} \Pi_{j}=0 \quad, \quad M_{i j}=\left(\mathbf{1}-F^{2}\right)_{i j} \tag{6.7}
\end{equation*}
$$

Note that in this case the Lagrangian constraints, (6.3), depends on velocities, and as mentioned before, the transformation (6.4), is non-singular and the Lagrangian constraints can be translated into Hamiltonian constraints, (6.7), without any difficulty. The consistency of the primary constraints should be verified:

$$
\begin{equation*}
\dot{\Phi}_{i}^{(0)}=\left\{\Phi_{i}^{(0)}, H_{T}\right\}=\left\{\Phi_{i}^{(0)}, H\right\}+\lambda_{j}\left\{\Phi_{i}^{(0)}, \Phi_{j}^{(0)}\right\}=0 . \tag{6.8}
\end{equation*}
$$

The first term is easy to work out:

$$
\begin{equation*}
\Phi_{i}^{(1)}=\left\{\Phi_{i}^{(0)}, H\right\}=\left.\partial_{x} \Pi_{i}\right|_{x=0} \tag{6.9}
\end{equation*}
$$

Similar to the arguments of sec. $4,\left\{\Phi_{i}^{(0)}, \Phi_{j}^{(0)}\right\}$ is infinitely large compared to the first term, and the only way for (6.8) to be satisfied is

$$
\begin{equation*}
\lambda_{i}=0 \quad \text { and } \quad \Phi_{i}^{(1)}=0 \tag{6.10}
\end{equation*}
$$

Again, although the Lagrange multiplier, λ_{i}, is determined, there are secondary constraints, $\Phi_{i}^{(1)}=0$. Moreover we have the advantage that λ_{i} disappears in the remaining steps.

Direct calculations on the consistency conditions for the constraints leads to the chain

$$
\Phi_{i}^{(n)}=\left\{\begin{array}{cc}
\left.\partial_{x}^{n} \Phi_{i}\right|_{0} & n=0,2,4, \ldots \tag{6.11}\\
\left.\partial_{x}^{(n)} \Pi_{i}\right|_{0} & n=1,3,5, \ldots
\end{array}\right.
$$

To verify that these constraints are really second class, we study the matrix, $C_{i j}^{m n} \equiv$ $\left\{\Phi_{i}^{(m)}, \Phi_{j}^{(n)}\right\}:$

$$
C_{i j}^{m n}=\left\{\begin{array}{c}
m, n=1,3,5, \ldots \tag{6.12}\\
0 \\
-2(M F)_{i j} \int \delta(x) \delta\left(x^{\prime}\right) \partial_{x}^{m+1} \partial_{x^{\prime}}^{n} \delta\left(x-x^{\prime}\right) d x d x^{\prime} \quad m, n=0,2,4, \ldots \\
M_{i j} \int \delta(x) \delta\left(x^{\prime}\right) \partial_{x}^{m+1} \partial_{x^{\prime}}^{n} \delta\left(x-x^{\prime}\right) d x d x^{\prime} \quad m=0,2,4, \ldots, n=1,3,5, \ldots
\end{array}\right.
$$

C can be written in the form of

$$
\begin{equation*}
C=F \otimes B, \tag{6.13}
\end{equation*}
$$

where F is a 4×4 matrix:

$$
F=\left(\begin{array}{cc}
-2(M F) & M \tag{6.14}\\
-M & 0
\end{array}\right)
$$

and B given by (4.18). In section 4 , we discussed that B is invertible. Since $\operatorname{det} F \neq 0, C$ is invertible too, hence all the constraints in the chain (6.11) are second class.

One can show that the fundamental Dirac brackets are as following

$$
\begin{align*}
&\left\{\phi_{i}(x), \phi_{j}\left(x^{\prime}\right)\right\}_{D . B .}=-\left\{\phi_{i}(x), \Phi_{k}^{(m)}\right\}\left(C^{-1}\right)_{k l}^{m n}\left\{\Phi_{l}^{(n)}, \phi_{j}\left(x^{\prime}\right)\right\} \tag{6.15}\\
&=\left(-2 M^{-1} F\right)_{i j}\left(\epsilon^{2} \sqrt{\pi} \delta(x) \delta\left(x^{\prime}\right)\right) \\
&\left\{\Pi_{i}(x), \Pi_{j}\left(x^{\prime}\right)\right\}_{D . B .}=-\left\{\Pi_{i}(x), \Phi_{k}^{(m)}\right\}\left(C^{-1}\right)_{k l}^{m n}\left\{\Phi_{l}^{(n)}, \Pi_{j}\left(x^{\prime}\right)\right\}=0 . \tag{6.16}\\
&\left\{\phi_{i}(x), \Pi_{j}\left(x^{\prime}\right)\right\}_{D . B .}=\delta\left(x-x^{\prime}\right)-\left\{\phi_{i}(x), \Phi_{k}^{(m)}\right\}\left(C^{-1}\right)_{k l}^{m n}\left\{\Phi_{l}^{(n)}, \Pi_{j}\left(x^{\prime}\right)\right\} \tag{6.17}\\
&= \delta\left(x-x^{\prime}\right)-R\left(x, x^{\prime}\right)=\delta_{N}\left(x, x^{\prime}\right) .
\end{align*}
$$

The important result of the mixed case is (6.15); the Dirac bracket of two field components are non-zero. This means that in the quantized theory these field components are noncommuting. In the string theory, where the fields describe the space coordinates, (6.15) tells us that, the space probed by open strings with mixed boundary conditions is a noncommutative space [2], 3, [4].

Using the canonical (or Fourier) transformations, (5.1) and (5.2), we can explicitly build up the reduced phase space for the mixed case. Let $\Phi_{i}(k)$ represent the Fourier modes of $\Phi_{i}(x)$ defined in (6.7),

$$
\begin{equation*}
\Phi_{i}(x)=\frac{1}{\sqrt{2 \pi}} \int \Phi_{i}(k) e^{i k x} d k \quad, \quad \Phi_{i}(k)=\frac{1}{\sqrt{2 \pi}} \int \Phi_{i}(x) e^{-i k x} d x \tag{6.18}
\end{equation*}
$$

Using (5.2), Poisson brackets of $\Phi_{i}(k)$ and $\Pi_{i}(k)$ can be worked out. Imposing the constraints (6.11), we find that $\Phi_{i}(k)$ and $\Pi_{j}(k)$, are odd and even functions of k respectively:

$$
\begin{equation*}
\Phi_{i}(x)=\frac{1}{\sqrt{\pi}} \int \Phi_{i}(k) \sin k x d k \quad, \quad \Pi_{i}(x)=\frac{1}{\sqrt{\pi}} \int \Pi_{i}(k) \cos k x d k \tag{6.19}
\end{equation*}
$$

Remembering (6.7), we can derive the field components:

$$
\begin{equation*}
\phi_{i}(x)=\frac{M_{i j}^{-1}}{\sqrt{\pi}} \int \frac{-d k}{k}\left(\Phi_{j}(k) \cos k x+F_{j k} \Pi_{k}(k) \sin k x\right), \tag{6.20}
\end{equation*}
$$

which explicitly satisfies the mixed boundary conditions.
Derived the mode expansions of the fields and their conjugate momenta, we finds their Poisson brackets:

$$
\begin{align*}
&\left\{\phi_{i}(x), \phi_{j}\left(x^{\prime}\right)\right\}= \frac{1}{\pi} \int \frac{d k}{k} \frac{d k^{\prime}}{k^{\prime}}\left[\left(M^{-1} F\right)_{i k}\left\{\Phi_{k}(k), \Pi_{l}\left(k^{\prime}\right)\right\} M_{l j}^{-1} \cos k x \sin k^{\prime} x^{\prime}+\right. \\
&\left.+\left(M^{-1} F\right)_{j k}\left\{\Pi_{k}(k), \Phi_{l}\left(k^{\prime}\right)\right\} M_{i l}^{-1} \cos k^{\prime} x^{\prime} \sin k x\right] \\
&=\frac{-1}{\pi} \int \frac{d k}{k}\left(M^{-1} F\right)_{i j}\left(\cos k x^{\prime} \sin k x+\cos k x \sin k x^{\prime}\right) \tag{6.21}\\
&=\left(M^{-1} F\right)_{i j} \int^{x}\left(\delta_{N}\left(y, x^{\prime}\right)-\delta_{D}\left(y, x^{\prime}\right)\right) d y \\
&=-2\left(M^{-1} F\right)_{i j} \int^{x} \delta\left(y+x^{\prime}\right) d y .
\end{align*}
$$

Since for $x, x^{\prime} \geq 0$

$$
\int^{x} \delta\left(y+x^{\prime}\right) d y= \begin{cases}1 & x=x^{\prime}=0 \tag{6.22}\\ 0 & \text { otherwise }\end{cases}
$$

(6.21) is non-zero only for $x, x^{\prime}=0$:

$$
\begin{equation*}
\left\{\phi_{i}(0), \phi_{j}(0)\right\}=-2\left(M^{-1} F\right)_{i j} \tag{6.23}
\end{equation*}
$$

Comparing (6.21) and (6.15), we find that they are exactly the same. In other words, (6.19) and (6.20) are functions defining the reduced phase space.

In the context of string theory, (6.21) implies that the end points of open strings subjected to mixed boundary conditions are living in a noncommutative space. The mixed open strings appear when we are studying D-branes in a NSNS two-form background. In this case, (6.21) tells us that the world-volume of such branes are noncommutative planes.

We can also calculate $\left\{\Pi_{i}(x), \Pi_{j}\left(x^{\prime}\right)\right\}$ and $\left\{\phi_{i}(x), \Pi_{j}\left(x^{\prime}\right)\right\}$. The results are in exact agreement with (6.16) and (6.17).

7 Concluding Remarks

In this paper, we studied the old and well-known problem of field theories with boundary conditions from a new point of view. We discussed that in the Lagrangian formulation boundary conditions are Lagrangian constraints which are not a consequence of a singular Lagrangian. For further study we built the Hamiltonian formulation, and considered boundary conditions as primary constraints. Asking for the constraints consistency conditions we found two new features in the context of constrained systems

1) Although the Lagrange multiplier in the total Hamiltonian is determined, the constraints chain is continued.
2) Boundary conditions are equivalent to an infinite chain of second class constraints.

Constructing the Dirac brackets of the fields and their conjugate momenta for these second class constraints, we showed that the method based on mode expansion, is equivalent to working in the reduced phase space.

The relation between Hamiltonian method we built here and the usual method of imposing boundary conditions in the equations of motion, can simply be understood. In the former, to ensure that boundary conditions are satisfied, we make the Taylor expansion of boundary conditions as a function of time, and put all the coefficient equal to zero. These coefficients are exactly our constraint chain. But, in the latter, the Fourier mode expansion is used and boundary conditions are guaranteed by choosing all the Fourier components to satisfy boundary conditions.

In the last section of the paper, we handled the mixed boundary conditions which seems to be an exciting problem in the context of string theory [7]. Having noncommuting field components, is the interesting feature appearing in this case. Besides the string theory, mixed boundary conditions can be encountered in the context of electrodynamics having an extra θ-term:

$$
S=\frac{1}{4} \int\left(\mathcal{F}_{\mu \nu}^{2}+\theta \epsilon_{\mu \nu \alpha \beta} \mathcal{F}_{\mu \nu} \mathcal{F}_{\alpha \beta}\right)
$$

In the above action θ plays a role similar F in our toy model. Varying the action gives a surface term, vanishing of which leads the mixed boundary conditions. Quantizing this theory is an interesting problem we postpone it to future works.

Acknowledgements

M.M Sh-J. would like to thank F. Ardalan and H. Arfaei for helpful discussions and also P-M. Ho for reading the manuscript.

Appendix: In this appendix we present some of the calculation details

$$
\begin{gathered}
K^{(m)}(x) \equiv\left\{\phi(x), \Phi^{(m)}\right\}=\left\{\begin{array}{cc}
0 & m=0,2,4, \ldots \\
\left\{\phi(x), \partial_{x}^{m} \Pi^{\left.(m)\right|_{0}}\right\}=k^{m}(x) \quad m=1,3,5, \ldots
\end{array}\right. \\
L^{(m)}(x) \equiv\left\{\Pi(x), \Phi^{(m)}\right\}=\left\{\begin{array}{c}
\left\{\Pi(x), \partial_{x}^{m} \phi^{\left.(m)\right|_{0}}\right\}=l^{m}(x) \quad m=0,2,4, \ldots \\
0 \\
m=1,3,5, \ldots
\end{array}\right. \\
k^{m}(x)=\int \partial_{x^{\prime}}^{m} \delta\left(x-x^{\prime}\right) \delta\left(x^{\prime}\right) d x^{\prime}=\frac{1}{\sqrt{\epsilon} \pi} \exp \left(\frac{-x^{2}}{\epsilon^{2}}\right) \frac{1}{\epsilon^{m}} H_{m}(0) \equiv \delta(x) k_{m} . \\
l^{m}(x)=-\int \partial_{x^{\prime}}^{m+1} \delta\left(x^{\prime}-x\right) \delta\left(x^{\prime}\right) d x^{\prime}=\frac{1}{\sqrt{\epsilon} \pi} \exp \left(\frac{-x^{2}}{\epsilon^{2}}\right) \frac{1}{\epsilon^{m+1}} H_{m+1}(0) \equiv \delta(x) k_{m+1} .
\end{gathered}
$$

where, $H_{m}(0)$ is the Hermite polynomial at zero. Then one can easily work out $\left\{\phi(x), \Pi\left(x^{\prime}\right)\right\}_{D . B}$.

$$
\left\{\phi(x), \Pi\left(x^{\prime}\right)\right\}_{D . B .}=\delta\left(x-x^{\prime}\right)+k_{m+1} k_{n} B_{m n}^{-1} \delta(x) \delta\left(x^{\prime}\right)
$$

The power of ϵ in $k_{m+1} k_{n} B_{m n}^{-1}$, can be read off from the explicit form of k_{m} and $B_{m n}$, and the results is $k_{m+1} k_{n} B_{m n}^{-1}=\kappa \epsilon$.

Calculations for the mixed boundary conditions can be performed similarly.

References

[1] P.A.M. Dirac, "Lecture Notes on Quantum Mechanics", Yeshiva University New York, 1964. Also see, P.A.M. Dirac, Proc. Roy. Soc. London, ser. A, 246, 326 (1950).
[2] F. Ardalan, H. Arfaei, M. M. Sheikh-Jabbari, "Mixed Branes and Matrix Theory on Noncommutative Torus", Proceeding of PASCOS 98, hep-th/9803067.
F. Ardalan, "String Theory, Matrix Model, and Noncommutative Geometry", hepth/9903117.
[3] F. Ardalan, H. Arfaei, M. M. Sheikh-Jabbari, "Noncommutative Geometry From Strings and Branes", JHEP 02 (1999) 016.
[4] C.-S. Chu, P.-M. Ho, "Noncommutative Open Strings and D-branes", Nucl. Phys. B550 (1999) 151, hep-th/9812219.
[5] F. Ardalan, H. Arfaei, M. M. Sheikh-Jabbari, "Dirac Quantization of Open Strings and Noncommutativity in Branes", hep-th/9906161.
[6] C.-S. Chu, P.-M. Ho, "Constrained Quantization of Open Strings in Background B Field and Noncommutative D-branes", hep-th/9906192.
[7] N. Seiberg, talk given in the conference New Ideals in Particle Physics and Cosmology, Uni. Penn., May 19-22, 1999.
[8] A. Shirzad, Jour. of phys.A: MAth. Gen. vol. 31 (1998), 2747.
[9] C. Battle, J.M. Gomis, and N. Roman-Roy, Jour. Math. Phys. vol. 27 (1986) 2953.
[10] S. Weinberg, "The Quantum Theory of Fields", vol. 1, Cambridge University Press.
[11] T. Maskawa and H. Nakajima, "Singular Lagrangian and the Dirac-Faddeev Method", Prog. Theo. Phys, Vol. 56, (1976) 1295.
[12] Murray R. Spiegel, Mathematical Handbook, Schaum's outline series.

[^0]: ${ }^{1}$ E-mails:jabbari@theory.ipm.ac.ir, shirzad@cc.iut.ac.ir

[^1]: ${ }^{2}$ It is worth noting that we still have the option $\delta \phi_{0}$ or $\delta \phi_{N}=0$ which in the continuum limit translate into the Dirichlet boundary conditions .

[^2]: ${ }^{3}$ Find more detailed calculations in the appendix.

[^3]: ${ }^{4}$ For Dirichlet case Cosine should be replaced be Sine.

